AU Class
AU Class
class - AU

Streamlining MEP Sustainability Analysis Through Power BI and the ACC Model Viewer

共享此课程
在视频、演示文稿幻灯片和讲义中搜索关键字:

说明

For too long, the environmental impact of mechanical, electrical, and plumbing (MEP) systems has been underestimated, especially compared to structural and architectural elements. However, case studies, particularly those involving industrial buildings, reveal a significant impact. Unfortunately, most off-the-shelf lifecycle analysis (LCA) solutions don't address MEP. As a global leader in design and consulting services, Jacobs is here to change that. We've developed and built a custom Power BI visual. This innovative tool pulls both models and their associated metadata directly into Power BI. Our LCA experts then took things a step further. They developed calculations that convert the extracted data on quantities, dimensions, and materials into measurable global warming impacts. The result? Powerful LCA dashboards with clear model visuals. These tools empower our engineers and clients to make data-driven decisions that minimize the global warming impact of their designs.

主要学习内容

  • Discover which Revit MEP categories are significant and quantifiable for LCA.
  • Learn how to set up conversions from material/quantity take schedules to carbon output in Power BI.
  • Learn how Jacobs uses dashboards to translate design choices into quantifiable data related to global-warming impact.

讲师

  • Margarita Kreternova
    Margarita Kreternova is a dedicated professional with a strong focus on the digital execution and delivery of data centers projects since 2012. She has a deep commitment to understanding and resolving BIM issues specific to the data center sector for hyper-scale and co-location clients. Margarita is passionate about sustainability, software interoperability, and the extraction of data from models, aiming to enhance efficiency and environmental stewardship in her projects. Due to her understanding of the market and commitment to sustainability and success of digital execution, she has become a specialist in this area to help drive innovation forward where solutions in the industry fall short.
Video Player is loading.
Current Time 0:00
Duration 36:53
Loaded: 0.45%
Stream Type LIVE
Remaining Time 36:53
 
1x
  • Chapters
  • descriptions off, selected
  • en (Main), selected
Transcript

MARGARITA KRETERNOVA: Hello. Good afternoon, everybody. This is Streamlining MEP Sustainability Analysis Through Power BI and ACC Model Viewer. I'm Margarita Kreternova. I am the Director of Digital Delivery for Data Centers at Jacobs.

Since 2017, I've been focused on digital execution and delivery for data center projects, specializing in solving BIM challenges for hyperscale and co-location clients. My passion lies in sustainability and software interoperability, finding efficient ways to extract data from models to improve both environmental performance and project delivery.

After graduating with a dual major in architecture and sustainability in 2012, I wasn't sure I'd be able to apply my sustainability knowledge. And I feel very fortunate that after years of focusing on BIM, I'm now able to combine my passion with my professional work.

I'll begin by looking at data center Life Cycle Assessments, known as LCAs, from a high-level perspective and discuss how these assessments differ from those done for commercial and residential buildings. Next, I'll demonstrate the critical importance of accounting for MEP elements in data center LCAs, supported by evidence from several studies conducted by Jacobs.

Next, I'll explore a case study where Jacobs was challenged by a major confidential client to perform a comprehensive whole building LCA several years ago. This case study will lead into the technical substance of today's presentation, where I'll showcase our custom solution for effectively calculating the global warming impact of MEP systems. And, finally, I'll close with some lessons learned and discuss next steps for improving MEP LCA methodologies.

So, first, an introduction to data center LCAs and the missing piece to the puzzle. The global demand for data centers continues to rise, particularly following the surge in AI technologies, which has increased the need for cloud storage and processing power. Traditionally, LCAs have focused primarily on structural and architectural systems. However, we're now realizing that this approach overlooks substantial portions of global warming impact, especially for building types like data centers.

Over the past five years, our comprehensive whole building LCAs have grown into a significant market segment for us, providing us with the opportunity to refine and optimize our workflows, which I'll be sharing with you today.

LCA first gained popularity through LEED certifications, which at the time didn't focus very much on MEP systems. While this approach might make sense for commercial and residential buildings, when analyzing advanced facilities like data centers, a large portion of the building's components are being overlooked.

In our early work, we utilized some model auditing tools to extract item counts from data center Revit models and found that MEP services made up 74% of all items. While this didn't equate to 74% of global warming impact, it really underscored for us the necessity of calculating MEP impact to create a truly accurate whole building LCA.

As we began conducting whole building LCAs, we relied on case studies from other building types, such as health care facilities, to identify items that had a high, medium, and low global warming impact. During this analysis, we discovered that tools like Tally were missing large segments of high and medium impact MEP items, which you can see outlined here in dashed lines.

This gap in analysis led us to develop custom tools that would fill this void. I think it's worth noting that this happened incrementally. We actually began in Excel, then transitioned to Power BI, and ultimately developed the custom solution, which I'll demonstrate for you today. This progression reflects the organic development of a truly useful tool shaped by demand and collaboration with subject matter experts.

Through years of conducting the whole building LCAs, we've gathered substantial evidence that MEP systems contribute significantly to global warming, with MEP systems accounting for approximately 15% of total impact and equipment averaging 43%. Here we present data sets from different projects, clients, and regions, all showing a consistent trend in MEP contributions to global warming.

I was personally involved in the first two projects. And when I saw the result from the third study conducted by a completely different team, I felt very validated in our methodology as the percentages were strikingly similar. From the previous slide, I hope it's evident that MEP LCA analysis is crucial for data centers if we want to achieve an accurate representation of global warming impact.

Initially, our process was manual, involving exporting Revit schedules and then performing calculations in Excel. However, as client demand grew, we realized we needed a more efficient way to extract, analyze, and visualize MEP elements for life cycle analysis. This brings us to the technical portion of our presentation where I'll walk you through the custom solutions we developed to meet these needs.

So before zooming into MEP systems LCA an analysis, I am going to talk briefly about how we approached whole building LCA when we were first challenged to do it by our clients because I think walking through this process will allow you to understand our thinking and logic. Our process began by extracting quantities from Revit and assigning LCA factor using a combination of tools tailored to region and item type. These tools included Tally, SimaPro, and One Click, depending on where the LCA was located.

We then consolidated all the information into Power BI because we needed to create user friendly and accessible visuals for the client. Although we had to string together a bunch of different data sources and analysis methodologies in order to get a result, we didn't need the client to see that. For the client, the important thing was to see a combined report in Power BI and get a final combined number of what the global warming impact of their building was.

As we work through various elements in the Revit models, we noticed a pattern, how we calculated global warming impact for each Revit category. Architectural and structural elements were easily covered by existing plugins. For MEP systems, we extracted key dimensions and performed calculations to determine material mass and then applied LCA factors accordingly.

Equipment required us to extract quantities as well as model, make, and type information from the models and research Environmental Product Declarations, also known as EPDs, for each piece of equipment. Unfortunately, this is a highly manual task that was handled by our LCA experts.

From this work, three distinct workflows emerged, each dependent on the type of item from the Revit model. All three workflows converged in Power BI, allowing us to provide clients with a consolidated global warming impact figure and easy to use visuals. Among these workflows, the MEP system's workflow showed the most potential for packaging into a tool that could significantly increase the speed and accuracy of the calculation. This will be the focus of the technical part of today's presentation.

So let's take a deep dive into the MEP system tools we developed. To optimize MEP LCA analysis, we used two custom tools. One is called SIFT and the other one is called Alluvial. SIFT is a custom visualization tool that pulls an Autodesk Construction Cloud model view into Power BI, allowing for customization and manipulation.

If you're familiar with Power BI, you'll recognize this visualization pane. SIFT is a custom visualization that can be added to a Power BI dashboard. Alluvial allows for secure data access and processing via an Azure data lakehouse and facilitates importing data into Power BI as a web source. Again, Power BI users will recognize importing data as a web source in this image. Once these tools are integrated into Power BI, the dashboard design uses typical out-of-the-box Power BI functionality.

Our workflow can be broken down into three parts. First, we configure an ACC view and identify parameters to pull into Power BI for LCA calculations using Alluvial. Next, we move into Power BI for data cleanup, calculation of volumes, masses, material consolidation, and assigning LCA factors.

And, finally, we create the Power BI report, which visualizes total global warming impact alongside color-coded visuals. Before we dive into the details, here's a high-level roadmap of the ACC Alluvial portion of the workflow. In the upcoming slides, I'll walk through each step, but this is an overview. And it will give you an understanding of what's ahead.

So first of all, as I mentioned, it's key to create a publish view in ACC that contains the information that you're interested in analyzing. Then you create a new Alluvial SIFT workspace. After that, you allow the Alluvial platform access to your ACC data. Then you'll be prompted to select files from an ACC project.

And after selecting the file, you'll be prompted to select a specific view and a specific version of the view. At that point, a model ID and SIFT key will be generated, which it's important to note for use later in Power BI. After that, the next step that comes is importing all of the model data from ACC into Alluvial. And this takes a little bit of time.

After all of the data is imported, the user creates attribute sets, which are basically curated lists of attributes that are important to the analysis, which will then be brought into Power BI. After the curated lists are created, they are processed. After they're processed, unique URL is generated for each list, and that is what goes into Power BI.

So a well-developed ACC view is really the foundation for the success of this workflow. It's important to isolate content that you're interested in analyzing as this reduces the visual load times and simplifies attribute selection. For example, if doors were included in this view, you would have unnecessary width and height attributes for doors mixed in with information about ducts, making the selection process for useful attributes more time consuming.

Remember, the SVF file format used by ACC is structured differently than the native Revit file, so finding corresponding parameters might require some trial and error and just some getting used to. Also, it's important to understand that depending on the shape of the system, whether it's round, rectangular, or trough, you need to focus on different dimensions to perform calculations. Another important thing to keep in mind is that materials are also stored in different parameters depending on the system. And sometimes it takes a while to find where designers have put the material parameter.

Once the ACC view is configured, we move into Alluvial. After creating a new workspace, we begin by signing into the Autodesk Construction Cloud. This allows Alluvial to access the ACC data for the selected project. We navigate through the project folders to find a specific view.

And then Alluvial imports all the data associated with the geometry and the selected view into the Azure data lakehouse. Once this process is complete, we create attribute sets, which are very similar to Revit schedules and contain curated sets of attributes that will eventually import into Power BI.

Now, I'm going to do a short video demo and walk you through the process because I think it's much easier to understand when you see a visual. So on the left hand, we have the ACC model viewer open. And on the right, you can see the Alluvial interface.

First, I'll focus on the electrical model and proceed to create new attribute set specifically for cable tray. You can think of attribute sets much like schedules in Revit, where we define which parameters will be displayed and tailored to our analysis.

The initial field that needs to appear in all the schedules is the name, and the name is essentially what's at the top of the properties in the ACC model viewer. For models coming from Revit, this is going to be a combination of the Revit category with the element ID. From here, the process becomes a little bit more intuitive, as you simply scroll down and identify which information you'd like to bring in.

You can see that I'm going through and selecting anything that is relevant to the LCA. When I get to dimensions, things get a little bit more complicated. As you can see, length appears multiple times.

This happens because there are several components in the view, cable tray, conduit, and wires, that all have length parameters. I'll go ahead and include all of them. And they will become consolidated during the attribute processing stage. I'm continuing with the selection of different dimensions and including anything that matches the criteria.

Finally, I'm scrolling through and looking for any additional parameters that may hold valuable material or shape information. Specifically for cable tray, there is information related to perforation. Whether a cable tray is wire mesh or solid, that can play a critical role. So I'm identifying any parameters that might contain this type of information. Finally, I am saving the set and confirming that everything has been saved correctly.

So after the sets are created, the attribute sets need to be processed. The processing extracts the curated data set from the model and places it into the Azure data lakehouse and then generates a URL for the data set that can be input into Power BI as a web source. Note, when there's a change in the model, attributes need to be either reprocessed, or a daily reprocess needs to be configured at the beginning of the project. But this is incredibly valuable because it means that as the designers are working on the Revit file, the information gets updated in Power BI.

Now that we've completed the data extraction process in Alluvial, we're ready to move into Power BI. Similar to the ACC Alluvial workflow, here's a high-level roadmap of the Power BI workflow. At first, we'll import the data as a web source. Then we'll paste the Alluvial SIFT URL in.

Afterwards, we'll manipulate the data and do some vital cleanup. Then I will talk about importing LCA factors into the Power BI dashboard, how to do the LCA calculations, and then, finally, how to combine all of the MEP system results together to get a combined global warming number, as well as how to create and colorize the visuals with relevant information.

Again, I'm going to do a video demo and walk through the process with you. Here I'm retrieving the Alluvial SIFT URL for a specific attribute set. In this case, it's the conduit from the electrical model and then using the Power BI web source data connection to bring all of this information in.

The data will take a second to import. I'm going to jump straight into transforming the data in Power Query to perform some initial cleanup and filtering. One of the first things I'll do is rename the data source to something more intuitive, like conduit for clarity.

Then as we saw in the ACC model viewer, the name of each item imported from Revit consists of two parts, the Revit category and the element ID. In this step, I'm splitting this information into two separate columns since I'll need the Revit category column to filter out just the conduit data. I'm then cleaning up the element ID data a little bit more. Now, I'm filtering for just conduit before adding this data set into the Power BI dashboard so that it performs faster.

Finally, I'm loading it in, which reloads all of my data sets. And as you can see, conduit now appears in the upper right-hand side as a data source.

One of the first steps in Power BI is cleaning up how the data comes through. We did a little bit of this in the last step, so breaking up the name column is a vital step. Then it's essential to make sure that all of the dimensions have consistent units.

For example, in our calculations, we chose to standardize everything to feet. But while length comes in feet, the other dimensions like height, width, and diameter actually come in inches. And so a conversion was required in order to make sure that all of the units were aligned and our calculations were correct.

The next step is essentially consolidating materials. So rather than enforcing a strict naming convention in Revit, we find it easier to consolidate material names in Power BI. Often, we're analyzing models created by other firms or by clients. So enforcing a standard naming convention isn't always an option.

At this point, our LCA experts will parse through the data to identify what different terms refer to the same material as far as life cycle analysis is concerned. Here, I'm showing you an example where rigid polyvinyl chloride conduit, PVC, polyvinyl, and plastic are all used as different material names in the model. However, they actually refer to the same material for the purposes of assigning global warming multipliers. So we use a combination of if and search functions to identify all of these items as PVC.

Sometimes materials are undefined in the Revit models. In this case, there are two options, either return to the designer for clarification or decide on an assumed material when materials are undefined. We do prefer to have a default assumption built in for any undefined material in our dashboard so that a preliminary MEP LCA can be performed.

Our assumptions are made based on materials we typically see for systems in data centers. An example I can give you is for undefined pipe, we assume that it's steel. For undefined conduit, we assume that it's PVC. It's very essential to make these assumptions transparent and flag any of the undefined materials. So in our dashboard, we actually have a page that shows exactly what percentage of materials were undefined and where we had to make a material assumption.

The nice thing is that at any point the materials can be defined in the Revit model and then the data reloaded into Power BI. At this point, the calculation is automatically rerun based on the new information, and a new global warming number is calculated that's more accurate. This is a screenshot from a project where no duct material was defined and about half of the conduit material was undefined. In this case, it would be beneficial to go back to the designers and have them define the duct material because 100% undefined is a dangerous assumption to make.

The next step that I'll walk you through is how we do the LCA calculations. So an LCA calculation in general is composed of the following steps. First, you identify the cross-sectional area of each item, which varies based on shape. The calculation for pipe is going to be different than the calculation for duct is going to be different than the calculation for cable tray because all of those items have different cross-sections.

Once you have found the cross-section, you multiply that by length. And then you multiply that by material density. And then you multiply that by the LCA multiplier. And you're able to get a global warming impact number for any type of MEP system. We keep the material density and the LCA multipliers in a separate Excel table that's referenced into the Power BI dashboard so that the LCA experts can update those numbers more easily because they generally are more familiar with Excel.

A couple more things about the LCA multipliers. As I mentioned, they're maintained in a separate spreadsheet, allowing the LCA subject matter expert to easily update and modify it without needing to use Power BI. These multipliers are broken down into life cycle stages, A through D, so that they can be included or excluded based on the project requirements.

I don't know if you noticed, but when I showed the examples of the three different data center LCAs that we've done, the different clients actually wanted different life cycle stages reflected. And so by splitting out the global warming impact by life cycle stage, you're able to essentially add or remove certain things.

For this particular dashboard, we used the Ecoinvent database sourced from SimaPro. If you are using a different database, you could essentially update the underlying Excel LCA multipliers with different numbers and rerun the analysis.

This is an example of what that table looks like. So I'm going to show an example of what applies to different types of systems. So, for example, these two line items would be used as the multipliers if you were doing an A1 through A3 analysis of steel duct. And then these two multipliers would be used if you were doing an A1 through A3 analysis of steel pipe.

If you wanted to do an analysis that included stage C, you would also add these multipliers into the calculation as well. So splitting things out by life cycle stage allows for more flexibility of what is and is not included in the LCA, which we found different clients are interested in, including different life cycle stages. So this is critical.

Once all the calculations are complete, we aggregate the data using a union function, focusing only on high-level columns that are common across all the MEP systems. These columns typically include material, length, the global warming impact, and the system type, which is a little bit different depending on whether you're looking at pipe, conduit, duct, or cable tray.

After completing the analysis, we use the SIFT visualization tool to colorize the model based on global warming impact. The model applies a red, a green, to yellow, to orange, to red gradient, where green represents low impact and red indicates higher impact.

In this example, you can see that the chilled water return piping system, which contributes to 37% of the overall global warming impact, appears in a darker orange versus the sanitary system, which only accounts for 2% is highlighted in green. The SIFT visual allows you to pick any kind of parameter to colorize your model based on. And this can be dynamic. The interesting thing is if the underlying data set was updated and more MEP systems were added to this that were more significant, the color gradient would start to change.

So now I'm going to give a demo of the dashboard as it appears in the Alluvial interface. So in the first tab, I'm presenting the overall calculated global warming impacts. The total value is predominantly displayed on the right in a large, easy to read format. Next, I've included a series of graphs that offer a high-level breakdown across MEP system categories, specifically piped, duct, conduit, and cable tray.

To the right, we dive a little deeper by breaking down these broader categories into more specific systems. Because this is a dynamic Power BI report, I can interact with the visual by clicking on parts of them. And the values on the screen will automatically update.

Moving to the second tab, here's where we provide some additional informational insights. We've documented the assumptions made for any materials that were undefined in the Revit model. Fortunately, since this particular dashboard is based on a sample file, there aren't any undefined materials. However, as I showed earlier, if there are any missing material definitions, they would show up colorized and with percentages.

And the third tab is where we list the LCA multipliers used for the analysis, along with their sources. As I was explaining, these values can be adopted depending on the region, the specific life cycle stages that apply to the project, or alternate LCA data sources.

Next, we dive into the LCA numbers for each MEP system category. This section provides detailed insight into why certain systems have a higher impact. Factors such as the material used and the size of the system play a crucial role.

Materiality, in particular, is a key focus for many of our clients and designers, which is why we've added a slicer to allow for easy manipulation of this variable. In the next tab, we have the SIFT visualization. It takes a second to load, just like the ACC view.

Here the model is colorized based on each system's contribution to the total global warming impact. For instance, the chilled water return system contributes a significant 37% to the global warming impact, which is why it's highlighted in a darker orange. In contrast, the sanitary system contributes just 2%, so it appears in green. All of the systems can be displayed and colorized simultaneously. This is very helpful for clients.

Next, in the global warming insights sections, we attempt to highlight some of the key factors that might be driving a system's impact when it comes to global warming. When comparing the chilled water return system to the sanitary system, for example, we can see that the chilled water system has a longer length, a larger average diameter, and is constructed from steel, factors that increase its impact.

On the other hand, the sanitary system is shorter, has a smaller diameter, and is made of PVC. Similar tabs exist for every MEP category, ducts, cable tray, and conduit, each offering detailed insights into their respective impacts.

So at Jacobs, the next steps for us is creating an equally efficient workflow for MEP equipment, which comprises an even higher percentage of global warming impact for data centers. Looking forward, we're researching the possibility of using Alluvial SIFT and artificial intelligence to automatically match environmental product declarations with what appears in the Revit models. This is currently a very time-consuming task, but it's one that actually aligns squarely with the strengths of artificial intelligence.

I'd like to end by returning to this slide, which highlights the significant contribution of MEP systems to overall global warming impact. On average, MEP systems account for 15% of total impact, and MEP equipment accounts for 43%. It is crucial that we continue to investigate MEP impacts, not just for data but across other building types as well.

Ignoring MEP systems means missing a huge piece of the sustainability puzzle. The future of life cycle assessment must include a strong focus on MEP systems to drive meaningful change. I'd like to encourage you to push for incorporating MEP LCAs into projects armed with the knowledge from this presentation.

Also, I want you to know that calculating MEP impact is possible to do in an effective, consistent way. And I think that we're on the precipice of having tools that accomplish this at scale. Thank you.

______
icon-svg-close-thick

Cookie 首选项

您的隐私对我们非常重要,为您提供出色的体验是我们的责任。为了帮助自定义信息和构建应用程序,我们会收集有关您如何使用此站点的数据。

我们是否可以收集并使用您的数据?

详细了解我们使用的第三方服务以及我们的隐私声明

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

通过这些 Cookie,我们可以记录您的偏好或登录信息,响应您的请求或完成购物车中物品或服务的订购。

改善您的体验 – 使我们能够为您展示与您相关的内容

通过这些 Cookie,我们可以提供增强的功能和个性化服务。可能由我们或第三方提供商进行设置,我们会利用其服务为您提供定制的信息和体验。如果您不允许使用这些 Cookie,可能会无法使用某些或全部服务。

定制您的广告 – 允许我们为您提供针对性的广告

这些 Cookie 会根据您的活动和兴趣收集有关您的数据,以便向您显示相关广告并跟踪其效果。通过收集这些数据,我们可以更有针对性地向您显示与您的兴趣相关的广告。如果您不允许使用这些 Cookie,您看到的广告将缺乏针对性。

icon-svg-close-thick

第三方服务

详细了解每个类别中我们所用的第三方服务,以及我们如何使用所收集的与您的网络活动相关的数据。

icon-svg-hide-thick

icon-svg-show-thick

绝对必要 – 我们的网站正常运行并为您提供服务所必需的

Qualtrics
我们通过 Qualtrics 借助调查或联机表单获得您的反馈。您可能会被随机选定参与某项调查,或者您可以主动向我们提供反馈。填写调查之前,我们将收集数据以更好地了解您所执行的操作。这有助于我们解决您可能遇到的问题。. Qualtrics 隐私政策
Akamai mPulse
我们通过 Akamai mPulse 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Akamai mPulse 隐私政策
Digital River
我们通过 Digital River 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Digital River 隐私政策
Dynatrace
我们通过 Dynatrace 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Dynatrace 隐私政策
Khoros
我们通过 Khoros 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Khoros 隐私政策
Launch Darkly
我们通过 Launch Darkly 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Launch Darkly 隐私政策
New Relic
我们通过 New Relic 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. New Relic 隐私政策
Salesforce Live Agent
我们通过 Salesforce Live Agent 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Salesforce Live Agent 隐私政策
Wistia
我们通过 Wistia 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Wistia 隐私政策
Tealium
我们通过 Tealium 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Tealium 隐私政策
Upsellit
我们通过 Upsellit 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Upsellit 隐私政策
CJ Affiliates
我们通过 CJ Affiliates 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. CJ Affiliates 隐私政策
Commission Factory
我们通过 Commission Factory 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Commission Factory 隐私政策
Google Analytics (Strictly Necessary)
我们通过 Google Analytics (Strictly Necessary) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Strictly Necessary) 隐私政策
Typepad Stats
我们通过 Typepad Stats 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Typepad Stats 隐私政策
Geo Targetly
我们使用 Geo Targetly 将网站访问者引导至最合适的网页并/或根据他们的位置提供量身定制的内容。 Geo Targetly 使用网站访问者的 IP 地址确定访问者设备的大致位置。 这有助于确保访问者以其(最有可能的)本地语言浏览内容。Geo Targetly 隐私政策
SpeedCurve
我们使用 SpeedCurve 来监控和衡量您的网站体验的性能,具体因素为网页加载时间以及后续元素(如图像、脚本和文本)的响应能力。SpeedCurve 隐私政策
Qualified
Qualified is the Autodesk Live Chat agent platform. This platform provides services to allow our customers to communicate in real-time with Autodesk support. We may collect unique ID for specific browser sessions during a chat. Qualified Privacy Policy

icon-svg-hide-thick

icon-svg-show-thick

改善您的体验 – 使我们能够为您展示与您相关的内容

Google Optimize
我们通过 Google Optimize 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Google Optimize 隐私政策
ClickTale
我们通过 ClickTale 更好地了解您可能会在站点的哪些方面遇到困难。我们通过会话记录来帮助了解您与站点的交互方式,包括页面上的各种元素。将隐藏可能会识别个人身份的信息,而不会收集此信息。. ClickTale 隐私政策
OneSignal
我们通过 OneSignal 在 OneSignal 提供支持的站点上投放数字广告。根据 OneSignal 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 OneSignal 收集的与您相关的数据相整合。我们利用发送给 OneSignal 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. OneSignal 隐私政策
Optimizely
我们通过 Optimizely 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Optimizely 隐私政策
Amplitude
我们通过 Amplitude 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Amplitude 隐私政策
Snowplow
我们通过 Snowplow 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Snowplow 隐私政策
UserVoice
我们通过 UserVoice 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. UserVoice 隐私政策
Clearbit
Clearbit 允许实时数据扩充,为客户提供个性化且相关的体验。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。Clearbit 隐私政策
YouTube
YouTube 是一个视频共享平台,允许用户在我们的网站上查看和共享嵌入视频。YouTube 提供关于视频性能的观看指标。 YouTube 隐私政策

icon-svg-hide-thick

icon-svg-show-thick

定制您的广告 – 允许我们为您提供针对性的广告

Adobe Analytics
我们通过 Adobe Analytics 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Adobe Analytics 隐私政策
Google Analytics (Web Analytics)
我们通过 Google Analytics (Web Analytics) 收集与您在我们站点中的活动相关的数据。这可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。我们使用此数据来衡量我们站点的性能并评估联机体验的难易程度,以便我们改进相关功能。此外,我们还将使用高级分析方法来优化电子邮件体验、客户支持体验和销售体验。. Google Analytics (Web Analytics) 隐私政策
AdWords
我们通过 AdWords 在 AdWords 提供支持的站点上投放数字广告。根据 AdWords 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AdWords 收集的与您相关的数据相整合。我们利用发送给 AdWords 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AdWords 隐私政策
Marketo
我们通过 Marketo 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。我们可能会将此数据与从其他信息源收集的数据相整合,以根据高级分析处理方法向您提供改进的销售体验或客户服务体验以及更相关的内容。. Marketo 隐私政策
Doubleclick
我们通过 Doubleclick 在 Doubleclick 提供支持的站点上投放数字广告。根据 Doubleclick 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Doubleclick 收集的与您相关的数据相整合。我们利用发送给 Doubleclick 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Doubleclick 隐私政策
HubSpot
我们通过 HubSpot 更及时地向您发送相关电子邮件内容。为此,我们收集与以下各项相关的数据:您的网络活动,您对我们所发送电子邮件的响应。收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、电子邮件打开率、单击的链接等。. HubSpot 隐私政策
Twitter
我们通过 Twitter 在 Twitter 提供支持的站点上投放数字广告。根据 Twitter 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Twitter 收集的与您相关的数据相整合。我们利用发送给 Twitter 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Twitter 隐私政策
Facebook
我们通过 Facebook 在 Facebook 提供支持的站点上投放数字广告。根据 Facebook 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Facebook 收集的与您相关的数据相整合。我们利用发送给 Facebook 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Facebook 隐私政策
LinkedIn
我们通过 LinkedIn 在 LinkedIn 提供支持的站点上投放数字广告。根据 LinkedIn 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 LinkedIn 收集的与您相关的数据相整合。我们利用发送给 LinkedIn 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. LinkedIn 隐私政策
Yahoo! Japan
我们通过 Yahoo! Japan 在 Yahoo! Japan 提供支持的站点上投放数字广告。根据 Yahoo! Japan 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Yahoo! Japan 收集的与您相关的数据相整合。我们利用发送给 Yahoo! Japan 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Yahoo! Japan 隐私政策
Naver
我们通过 Naver 在 Naver 提供支持的站点上投放数字广告。根据 Naver 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Naver 收集的与您相关的数据相整合。我们利用发送给 Naver 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Naver 隐私政策
Quantcast
我们通过 Quantcast 在 Quantcast 提供支持的站点上投放数字广告。根据 Quantcast 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Quantcast 收集的与您相关的数据相整合。我们利用发送给 Quantcast 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Quantcast 隐私政策
Call Tracking
我们通过 Call Tracking 为推广活动提供专属的电话号码。从而,使您可以更快地联系我们的支持人员并帮助我们更精确地评估我们的表现。我们可能会通过提供的电话号码收集与您在站点中的活动相关的数据。. Call Tracking 隐私政策
Wunderkind
我们通过 Wunderkind 在 Wunderkind 提供支持的站点上投放数字广告。根据 Wunderkind 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Wunderkind 收集的与您相关的数据相整合。我们利用发送给 Wunderkind 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Wunderkind 隐私政策
ADC Media
我们通过 ADC Media 在 ADC Media 提供支持的站点上投放数字广告。根据 ADC Media 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 ADC Media 收集的与您相关的数据相整合。我们利用发送给 ADC Media 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. ADC Media 隐私政策
AgrantSEM
我们通过 AgrantSEM 在 AgrantSEM 提供支持的站点上投放数字广告。根据 AgrantSEM 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 AgrantSEM 收集的与您相关的数据相整合。我们利用发送给 AgrantSEM 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. AgrantSEM 隐私政策
Bidtellect
我们通过 Bidtellect 在 Bidtellect 提供支持的站点上投放数字广告。根据 Bidtellect 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bidtellect 收集的与您相关的数据相整合。我们利用发送给 Bidtellect 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bidtellect 隐私政策
Bing
我们通过 Bing 在 Bing 提供支持的站点上投放数字广告。根据 Bing 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Bing 收集的与您相关的数据相整合。我们利用发送给 Bing 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Bing 隐私政策
G2Crowd
我们通过 G2Crowd 在 G2Crowd 提供支持的站点上投放数字广告。根据 G2Crowd 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 G2Crowd 收集的与您相关的数据相整合。我们利用发送给 G2Crowd 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. G2Crowd 隐私政策
NMPI Display
我们通过 NMPI Display 在 NMPI Display 提供支持的站点上投放数字广告。根据 NMPI Display 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 NMPI Display 收集的与您相关的数据相整合。我们利用发送给 NMPI Display 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. NMPI Display 隐私政策
VK
我们通过 VK 在 VK 提供支持的站点上投放数字广告。根据 VK 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 VK 收集的与您相关的数据相整合。我们利用发送给 VK 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. VK 隐私政策
Adobe Target
我们通过 Adobe Target 测试站点上的新功能并自定义您对这些功能的体验。为此,我们将收集与您在站点中的活动相关的数据。此数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID、您的 Autodesk ID 等。根据功能测试,您可能会体验不同版本的站点;或者,根据访问者属性,您可能会查看个性化内容。. Adobe Target 隐私政策
Google Analytics (Advertising)
我们通过 Google Analytics (Advertising) 在 Google Analytics (Advertising) 提供支持的站点上投放数字广告。根据 Google Analytics (Advertising) 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Google Analytics (Advertising) 收集的与您相关的数据相整合。我们利用发送给 Google Analytics (Advertising) 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Google Analytics (Advertising) 隐私政策
Trendkite
我们通过 Trendkite 在 Trendkite 提供支持的站点上投放数字广告。根据 Trendkite 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Trendkite 收集的与您相关的数据相整合。我们利用发送给 Trendkite 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Trendkite 隐私政策
Hotjar
我们通过 Hotjar 在 Hotjar 提供支持的站点上投放数字广告。根据 Hotjar 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Hotjar 收集的与您相关的数据相整合。我们利用发送给 Hotjar 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Hotjar 隐私政策
6 Sense
我们通过 6 Sense 在 6 Sense 提供支持的站点上投放数字广告。根据 6 Sense 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 6 Sense 收集的与您相关的数据相整合。我们利用发送给 6 Sense 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. 6 Sense 隐私政策
Terminus
我们通过 Terminus 在 Terminus 提供支持的站点上投放数字广告。根据 Terminus 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 Terminus 收集的与您相关的数据相整合。我们利用发送给 Terminus 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. Terminus 隐私政策
StackAdapt
我们通过 StackAdapt 在 StackAdapt 提供支持的站点上投放数字广告。根据 StackAdapt 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 StackAdapt 收集的与您相关的数据相整合。我们利用发送给 StackAdapt 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. StackAdapt 隐私政策
The Trade Desk
我们通过 The Trade Desk 在 The Trade Desk 提供支持的站点上投放数字广告。根据 The Trade Desk 数据以及我们收集的与您在站点中的活动相关的数据,有针对性地提供广告。我们收集的数据可能包含您访问的页面、您启动的试用版、您播放的视频、您购买的东西、您的 IP 地址或设备 ID。可能会将此信息与 The Trade Desk 收集的与您相关的数据相整合。我们利用发送给 The Trade Desk 的数据为您提供更具个性化的数字广告体验并向您展现相关性更强的广告。. The Trade Desk 隐私政策
RollWorks
We use RollWorks to deploy digital advertising on sites supported by RollWorks. Ads are based on both RollWorks data and behavioral data that we collect while you’re on our sites. The data we collect may include pages you’ve visited, trials you’ve initiated, videos you’ve played, purchases you’ve made, and your IP address or device ID. This information may be combined with data that RollWorks has collected from you. We use the data that we provide to RollWorks to better customize your digital advertising experience and present you with more relevant ads. RollWorks Privacy Policy

是否确定要简化联机体验?

我们希望您能够从我们这里获得良好体验。对于上一屏幕中的类别,如果选择“是”,我们将收集并使用您的数据以自定义您的体验并为您构建更好的应用程序。您可以访问我们的“隐私声明”,根据需要更改您的设置。

个性化您的体验,选择由您来做。

我们重视隐私权。我们收集的数据可以帮助我们了解您对我们产品的使用情况、您可能感兴趣的信息以及我们可以在哪些方面做出改善以使您与 Autodesk 的沟通更为顺畅。

我们是否可以收集并使用您的数据,从而为您打造个性化的体验?

通过管理您在此站点的隐私设置来了解个性化体验的好处,或访问我们的隐私声明详细了解您的可用选项。